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Nonlinear effects for coda-type elastic waves in stressed granular media
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Experimental results and their interpretations are presented on the nonlinear acoustic effects of multiple
scattered elastic waves in unconsolidated granular media. Short wave packets with a central frequency higher
than the so-called cutoff frequency of the medium are emitted at one side of the statically stressed slab of glass
beads, and received at the other side after multiple-scattering and nonlinear elastic effects. Typical signals are
strongly distorted compared to their initially radiated shape both due to nonlinearity and scattering. It is shown
that acoustic waves with a deformation amplitude much lower than the mean static deformation of the contacts
in the medium can modify the elastic properties of the medium. This addresses the problem of acoustic wave
action on granular matter during and after acoustic excitation, which is necessary to understand in the nonde-
structive testing of the elastic properties of granular media by acoustic methods. Coda signal analysis is shown
to be a powerful time-resolved tool in monitoring slight modifications in the elastic response of an unconsoli-

dated granular structure.
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I. INTRODUCTION

Unconsolidated granular materials are known to exhibit a
high complexity in their macroscopic behaviors. This gives
rise to numerous fundamental and applied processes that are
currently intensively studied, such as avalanches, dune for-
mation, compaction, etc. [ 1-4]. Most of the studied physical
processes concerning the unconsolidated granular matter are
obviously related to the possibility for the grains to move
relative to each other, from microscopic (much smaller than
a grain diameter) to macroscopic (much larger than a grain
diameter) rearrangements. While large movements of grains
have been observed and modeled for the processes where the
granular material behavior may be fluidlike (even complex
and not classical), such as avalanches, microscopic relative
movements are less intuitive and less studied. They are, how-
ever, the only possible relative movements in solidlike
granular media where a static stress is applied and the grains
are confined in a given volume.

In this context, the acoustic waves, known to be highly
sensitive to the contact stresses [5—8], can be useful for
monitoring of these small relative movements [9], which are
impossible to detect by other existing methods. They could
even be useful for the generation of these small movements.
Among the several existing methods for the grain movement
or contact stress monitoring (carbon paper experiment, pho-
toelasticity, image processing from charge-coupled device
camera, X-ray tomography, or photoimaging in isoindex con-
figuration [2,4,10,11]), the acoustic methods are, to the best
of our knowledge, the only ones sensitive to the contact
stresses inside the volume of a three-dimensional (3D) non-
transparent medium. One of the main advantages of acoustic
methods is also the temporal resolution of the measurement,
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which could decrease down to the wave period (one milli-
second at one kHz), and is particularly interesting in tran-
sient processes such as avalanches for instance. However,
there is currently a lack of understanding of the acoustic
transport properties through granular media, which makes
these methods mostly qualitative.

Several previous studies [7,9,12,13] have shown the fol-
lowing qualitative features for the acoustic wave propagation
through stressed and noncohesive granular media. The
propagation of a low amplitude (with a strain much lower
than the average static strain of the contacts) and low-
frequency (LF) (with a wavelength much larger than the
grain diameter) wave can be linear, and is mostly governed
by the averaged properties of the medium (average density,
average static stress, coordination number) [14,15]. The
propagation of a high amplitude (with a strain lower than the
average static strain of the contacts but which can be com-
parable) and low-frequency wave is nonlinear, and governed
partly by the so-called weak contacts (with a static strain
lower than the average one) [7,16—18]. This is a consequence
of the fact that individual stress-strain relationships for each
contact have higher values of nonlinear parameters when the
prestress is smaller. For acoustic waves with wavelengths
comparable to the bead diameter, however, these simple fea-
tures are not straightforward, and the transport property de-
termination remains a fundamental problem. A linear diffu-
sion approach has been recently applied to the analysis of
coda-type signals in confined granular media [8]. This is one
of the first attempts to understand the transport properties of
short-wavelength elastic waves in such media at the labora-
tory scale, and to extract parameters such as a characteristic
time of absorption 7, and a diffusivity D. This approach is
based on previous works in elastic wave diffusion carried out
for slightly different media (solid rods in water [19], chaotic
cavities [20], or glass bead in water [21] for instance) and on
a different scale [22,23].
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In this paper, we report experimental results of nonlinear
acoustic wave interactions in granular matter, with initially
radiated wavelengths close to the bead diameter. In some
well-chosen experimental configurations, it is possible to ob-
serve coda-type signals, together with a nonlinear signal of
low frequency, which is identified here as a self-demodulated
signal. The main aims of this paper are to report selected
experimental observations that contribute to understand (i)
what is the nature of short-wavelength elastic wave transport
in granular media, (ii) from which strain excitation amplitude
relative to the average static strain do the waves begin to
modify the granular packing elasticity, and (iii) why coda
wave shapes are extremely sensitive to the acoustic excita-
tion amplitude and to the external conditions applied on the
granular packing?

Among the presented experimental observations, features
that have not been reported in the literature should contribute
to the understanding of the elastic wave interactions with
granular matter. In the first part we present the experimental
configuration and the results of the investigations on the na-
ture of the transmitted signals. In the second part, we analyze
in detail the amplitude dependence of the multiple scattered
signals using a sequence of different excitation amplitudes
that allows observation of elastic wave-granular matter re-
versible and irreversible interactions. In the last part, the
main results are summarized and interpreted. The applica-
tions of some of the presented effects to the characterization
of granular media are finally discussed.

II. SETUP AND PRELIMINARY EXPERIMENTS
A. Experimental setup

In Fig. 1, a schematic representation of the experimental
setup is shown. A wave packet made of a sine wave at 100
kHz modulated in amplitude by a Gaussian function is high-
pass filtered over 40 kHz (in order to avoid any direct low-
frequency excitation), and is amplified and launched in the
medium with a shear piezotransducer. Due to multiple scat-
tering and mode conversions (including dilatancy [7]), the
acoustic energy is rapidly distributed between longitudinal
and shear vibrations in the medium. The use of a shear emit-
ter has the advantage of avoiding the direct excitation of a
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pressure wave in the air saturating the beads. It consequently
excites preferentially the elastic waves inside the granular
solid skeleton (the beads and their contacts). In the following
results, two types of Gaussian function widths for the ini-
tially launched wave packets have been used, and two types
of surface treatment for the shear transducer (the first type is
the raw transducer membrane with asperities estimated to be
of characteristic scale ~50 um and the second type is a
transducer with a glued single layer of 2-mm-diameter glass
beads, the same beads as in the medium itself). The container
diameter is D=20 cm, and the distance emitter-receiver can
be changed between 1 and 18 cm. The applied static uniaxial
stress is measured with a force sensor at one end of the
container and ranges from 30 to 500 kPa. A longitudinal
piezoelectric receiver is placed at the bottom of the con-
tainer. This transducer has been chosen because of its high
sensitivity over a wide-frequency band, allowing for a large
range in the acoustic amplitude measurements. In all the ex-
periments presented in the following, the estimated average
contact strain g, (with a value 3—7 X107 for a 200 kPa
applied stress) is always larger than the maximum acoustic
strain g,,,, =107,

This setup allows modification of the emitted acoustic fre-
quency and amplitude, the applied static stress, and the
propagation distance. But importantly, it is better for a quan-
titative insight in the wave propagation phenomena to
modify parameters of the setup that change the smallest
number of medium (or wave) parameters. The convenient
parameter to be modified is the wave excitation amplitude,
which can be accurately measured, and is reproducible. In
the following, signal dependences on different parameters of
the experiment are described in order to understand the
physical nature of the detected signals and the main pro-
cesses involved.

B. Dependence of the coda-type signals
on the excitation amplitude

Temporal signals presented in Fig. 2 are typical experi-
mental signals that can be observed when the initial acoustic
wavelength is of the order or less than the bead size and for
a static stress larger than ~100 kPa. For an estimation of the
wavelength, one can use the elastic parameters of glass and
the stress-strain relationship of an average loaded contact in
an effective-medium theory. However, it is important to keep
in mind that this definition neglects wave velocity dispersion,
which can be important when the spatial scale of the beads is
comparable with the wavelength. As an estimation, the wave
velocity in a disordered three-dimensional packing of 2 mm
glass beads with an applied static stress of 200 kPa is
cp=300=%=40 m/s, which gives a wavelength of 3 0.4 mm
at 100 kHz. This means that, for a wave packet centered on
100 kHz, submitted to a 200 kPa static stress, the wavelength
is of the order of the bead diameter, and consequently, strong
scattering occurs.

The typical experimental signals received in this case are
strongly distorted due to multiple scattering, and last from 10
to 100 times longer than the emitted signal of duration
~100 ws (see Fig. 2). Note that the chosen configuration
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FIG. 2. Experimental temporal signals (normalized) that are
typically received for different excitation amplitudes in the same
bead packing. The applied static stress is 0p=300*=5 kPa and the
emitter-receiver distance is D=10.5*=0.1 cm. Peak-to-peak ampli-
tudes of the non-normalized signals are roughly proportional to the
excitation amplitudes &,,.

with a shear emitter and a longitudinal receiver is particu-
larly suitable for such observation of multiple scattered sig-
nals as the initially purely shear wave has to be scattered
with a conversion from shear to longitudinal polarization in
order to be detected. These types of signals have been ob-
served in similar conditions in glass bead assemblages [12],
and are widely observed in multiple-scattering experiments
and in seismics [22]. They are consequently denoted here as
coda signals. We found, however, another feature in this
case, not mentioned previously in the literature: for different
excitation amplitudes, the normalized signals in Fig. 2 (ob-
tained for the same bead packing) are different. The relative
amplitude and shape dependence are the signature of a non-
linear process. One obvious difference between the traces is
the emergence, for an increasing excitation amplitude, of a
signal at earlier times, relatively lower in frequency than the
100 kHz coda-type signal. We verified in several other ex-
periments [7,13] that this LF signal is the self-demodulated
contribution associated with the rectification (demodulation)
of the initial high-frequency (HF) wave packet. Its nonlinear
nature is evidenced by its nonlinear amplitude dependence
on the excitation amplitude. This is an important difference
compared to results [8,12], where the very same types of
signals were observed (for instance for £,=5X 107° in Fig.
2). In [12], the LF contribution is identified as the linear
coherent part of the propagated initial pulse, and the HF
contribution is interpreted as the multiply scattered signal
part. A possible explanation for such a different observation
(in the amplitude dynamics behavior and physical nature of
the LF signal) is the difference in the spectral width of the
emitted signal. In Ref. [12], the signal spectrum width is
relatively wide, which may allow for the direct radiation of
the linear coherent LF component in the medium. Then, the
observation may be interpreted as a strong frequency depen-
dent transmission in the medium (due to absorption and scat-
tering), which is able to modify importantly the transport
character of different frequencies (propagative as in an effec-
tive medium, multiply scattered, diffusive, etc.).
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FIG. 3. Experimental spectra corresponding to temporal signals
of Fig. 2. The spectrum of the emitted signal with a 22% full width
at half maximum (FWHM) is superimposed on the top curve.

Here, as the emitted spectrum is sharper than in Ref. [12],
the direct radiation of the LF signal is negligible (and in any
case is avoided by the high-pass filter in the setup). This LF
signal is generated in the medium itself by a nonlinear wave
process of frequency mixing [7], widely described in the
literature [24-28]. This can be seen in Fig. 3, where the
relative amplitudes of the LF and the HF contributions are
modified by increasing the excitation amplitude. However,
note that this process is inefficient for shear waves in homo-
geneous solids for symmetry reasons but can be observed
here due to the mode conversion from shear to longitudinal
wave occurring due to inhomogeneities and due to the strong
nonlinear dilatancy [7].

C. Dependence on emitter-receiver distance

In Fig. 4, the received temporal signals are presented for
three source-receiver distances, with the same applied static

D =10.5cm

Normalized signals (Arb. Units)

D =125 cm

0 1 2 3 4 5
Time (ms)

FIG. 4. Signals received after propagation through different
thicknesses of granular medium, for identical static pressure of 300
kPa and excitation amplitude &,=5 X 107°.
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FIG. 5. (Color online) Signal energy variation as a function of
the applied static pressure. The HF (Eyg) and LF (Eff:) contribu-
tions are separated by filtering. The energy of a reference LF (EfF)
linear signal is also plotted for comparison.

stress of 300 kPa (measured with a precision of ~3%, which
is not sufficient to perform precise quantitative measure-
ments). An important qualitative feature observed on these
normalized (by their maximum) traces is the relative increase
in the LF contribution compared to the HF one with distance.
This feature is usually observed for the nonlinear self-
demodulation process [25], where, over a sufficient distance,
only the LF contribution is detectable due to the difference in
attenuation of the HF and the LF waves. In this experiment,
the LF signal energy is measured to be roughly constant with
distance while the received HF signal energy is decreasing
drastically. The former is a result of the competition between
nonlinear acoustic effects, which pump low frequencies
through frequency-down-conversion processes, and linear at-
tenuation.

D. Dependence on the applied static stress

In Fig. 5, the total energy of different signals is plotted as
a function of the applied static stress for a propagation
distance D=12.5%0.1 cm and an excitation amplitude
£, &,/ 50, where g,,,=107>. Three signal energies are
defined here: the energy of the HF contribution Eyp, the en-
ergy of the LF contribution Eﬁf;, and the energy of a directly
radiated LF signal EﬁF (in this case, a LF pulse with the same
frequency content as the nonlinearly demodulated pulse is
directly excited by the emitter and received after linear
propagation). First, comparing the evolution of the received
energies Eyr and EfF as a function of the applied static
stress, an important slope difference is clearly visible: Ef
dependence is less than to a power 1 of the stress and Eyg
dependence is close to a power 4 of the stress. In order to
explain this difference in the evolution of the transmitted
energy as a function of the applied static stress, one should
recall that two dominant processes of sound attenuation may
play a role: the scattering and the absorption due to linear
processes. Considering that the scattering of the HF wave at
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100 kHz is much more important than for the LF wave at 10
kHz, the observed difference may be attributed to the strong
stress dependent scattering. This is consistent with the simple
idea that, by increasing the static stress, contacts are created
and then add new paths (or strengthen existing paths) of
acoustic energy transmission. Moreover, waves following
force chains with a given stress may change from an evanes-
cent character to a propagative one with increasing stress
because the cutoff frequency (sometimes called the Einstein
frequency) is increased [29-31]. It is then possible to ask,
given the dramatic influence of the static stress on Eyp, if this
scattering could depend also on the acoustic amplitude of
excitation. Is the acoustic wave able to dynamically switch
propagation paths or force chains? The aim of the next sec-
tion is to analyze this opportunity and its possible manifes-
tations.

The competition between nonlinear effects and attenua-
tion is also visible in Fig. 5 when comparing the variations in
E{ and E'%. For signals having the same low frequency and
propagating through the same medium but generated either
directly by a transducer or by nonlinear acoustic effects dur-
ing wave transport, their received energies increase differ-
ently as a function of the applied static stress. It can be
assumed that the linear attenuation varies in the same way
for both signals. In contrary, the nonlinearity of the medium
and the HF attenuation, both playing a role in the generation
of the LF signal [25], may be strongly affected. The latter
modifications should only affect the nonlinearly generated
signal. Eff: variation as a function of the applied static stress
is almost negligible while EfF is increasing. It means that the
efficiency of the nonlinear wave interactions leading to the
self-demodulated signal is decreasing with increasing static
stress. Two main processes can lead to a diminishing of the
nonlinear wave interaction efficiency: the HF attenuation in-
creases (the amplitude of the nonlinear wave sources dimin-
ishes) and the intrinsic nonlinearity of the medium decreases.
As the HF attenuation (probed by the variation in Eyg) is
strongly diminishing with increasing static stress, it means
that the nonlinearity of the medium is decreasing with in-
creasing static stress. This is consistent with estimates based
on the Hertzian contact nonlinearity and other experimental
observations [7,13].

III. ANALYSIS OF AMPLITUDE DEPENDENT CODAS

Fast dynamic modifications of the medium submitted to
an acoustic wave, as well as slow-dynamic modifications or
permanent modifications of the medium are now investi-
gated. The experimental configuration is slightly different
from the one in the previous section. Some glass beads have
been glued to the shear emitting transducer surface, in order
to couple better to the medium and to improve the signal-to-
noise ratio.

The analysis of the obtained spectra indicates that it is
impossible to detect neither the second nor the third har-
monic component, certainly due to the strong observed at-
tenuation above 100 kHz. However, the self-demodulated
wave is quite easily generated and detected because of its
lower attenuation. In the following, the HF coda contribution
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and this LF self-demodulated contribution are separated by
postprocessing filtering in order to analyze in details the dif-
ferent amplitude-dependent processes.

In Fig. 6(a), typical temporal signals that are received by
a sensitive wide-band longitudinal transducer (with a sensi-
tive surface of 4.5 cm in diameter) are presented. The experi-
mental excitation amplitude sequence (EAS) elaborated in
order to analyze the amplitude-dependent effects of acoustic
wave transport is presented in Fig. 7(d). It contains 59 suc-
cessive excitation amplitudes. The ten first amplitudes, as
well as the last ten amplitudes, are identical and relatively
low (the acoustic strain is £,=&,_;o==107"). The odd num-
bered amplitudes 11-49 of this sequence are gradually in-
creasing up to a maximum amplitude of &,= 107>, while the
even numbered amplitudes 10-50 are equal to the minimum
probe amplitude &,=107". This allows comparison of the
response of the medium for different excitation amplitudes,
but also, to visualize the medium modifications after being
excited by a strong wave by using the weak probe wave. The
experiment time for the acquisition of one signal of this EAS
is close to 30 s. In Fig. 6, signals are numbered according to
their excitation amplitude in the EAS, the first signal of the
EAS being denoted by s;. The excitation signal is a sine
wave modulated in amplitude with a Gaussian function of
6% full width at half maximum (FWHM) in the frequency
domain, which, at the central frequency f,=100 kHz gives a
~0.2 ms duration pulse at half the maximum. This duration
is roughly the time necessary for the wave to travel from the
emitter to the receiver for the 6 cm distance.

In Fig. 6(a), received signals over the full available fre-
quency band (from 1 to 300 kHz) are presented for several
excitation amplitudes of the EAS: &, €11, €19, €59- The sig-
nal structure is quite complicated and shows several packets
typically four to five, having a shape close to the emitted
signal. It is important to note here that the time dependent
intensity of these signals is much different from a diffusive
type envelope, even if the average wavelength is of the order
of the bead radius. Another important feature is the emer-
gence, at a sufficiently high excitation amplitude of a rela-
tively low-frequency signal [see for instance signal s,9 cor-
responding to the amplitude &,9 in Fig. 6(a) and the
corresponding amplitude spectrum in Fig. 6(b)]. Due to its
amplitude-dependent character (this signal is not visible for

2

w

Time (ms)

lower excitation amplitudes), this LF signal is nonlinear, and
has been identified in the previous section as being the self-
demodulated contribution [7,13].

In the following, we analyze the high-frequency part of
the signals, and for quantitative comparison, the raw signals
are high-pass filtered [Fig. 6(b)]. These coda-type signals
have comparable time durations to those of Fig. 2 but their
envelope characteristic frequency is lower. This is a conse-
quence of the narrower Gaussian spectrum of excitation
compared to the previous section. However, despite the dif-
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Excitation amplitude
(Norm.)
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Signal number

FIG. 7. (a) Resemblance parameter R, ; between the signal
number n and the signal number 1 of the excitation amplitude se-
quence (EAS) (d). (b) Resemblance parameter R, ,_; between the
signal number n and the signal number n—1 of the EAS (d). (c)
Arrival time T, of half the signal energy as a function of the signal
number in the EAS (d). (d) Excitation amplitude sequence (EAS)
used in the experiment.
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ference in coda shape, the characteristics of wave transport
are similar.

A. Dependence of the signal shape on excitation amplitude

The most important characteristics of the signal evolution
with excitation amplitude is the fact that their temporal shape
is strongly modified, even for very moderate changes in the
excitation amplitude. This can be seen by comparing the
shapes s, and s,; in Fig. 6(c). Of course, by increasing fur-
ther the excitation amplitude, the distortion is further in-
creased (signal s;9). When the excitation amplitude is de-
creased down to the lowest amplitude of the EAS, i.e., to the
probe amplitude &, the shape modification of s,, compared
to s, is barely noticeable.

In order to monitor quantitatively the modifications of the
signal shapes due to amplitude-dependent effects, we make
use of the following parameter R,,, defined from the inter-
correlation function C,,(7)= I35, (Ds,,(t—=7)dt, where T is
the observation window duration, by

C,..(0
Rn,m = /A . (1)
v Cn,n(o) Cm,m(o)

The energy of signal s, (s,,) is proportional to C,,(0)
[C,..x(0)]. The normalization by vC,,,(0)C,,,(0) makes con-
sequently the parameter R, ,, independent of the actual ener-
gies of s, and s,, which is important in our case where
signals with different amplitudes are compared. The param-
eter is only dependent on the relative shapes of the signals
and can be seen as the level of resemblance of two signals,
equal to one if the two signals are exactly the same and
progressively diminishing when the signals differ.

In Fig. 7(a), the parameter R, | is plotted for each signal s,
to 559 Of the EAS. It is clearly visible that the parameter R ,
goes under a value of 0.9 while the signals s, to s, exhibit a
very accurate correlation with s;(R,_jo;=1). When the am-
plitude is increased further, the parameter R,; decreases
drastically to zero or less, which shows that a strong-field
modification occurred (the negative values of the parameter
R, , do not have a particular meaning, except when the value
reaches —1, which means that the signal phases are inverted).
Concerning the even signals generated with a low excitation
amplitude, their resemblance parameter remains practically
equals to one up to the 30th signal of the EAS. This means
that no modification of the granular medium elasticity is de-
tectable by this acoustic probing. However, when higher
acoustic amplitudes are generated in the medium, the level of
resemblance of the probe wave with the first signals of the
EAS begins to fall down progressively until the typical value
of 0.6 after the maximum excitation strain &49. The acousti-
cal properties of the medium have been modified by the
strong wave action.

When, at the end of the EAS, only the probe amplitude is
generated (signals ss, to s59), the parameter R, ; tends to one
with time; the acoustic properties of the medium are progres-
sively recovered in a slow healing process. The parameter
R, .. in Fig. 7(b) shows the level of resemblance of two
successive signals. It is interesting to see that, in this healing
process, two successive signals are practically identical,
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which makes this process slowly cumulative. This effect can
be seen as a slow-dynamic effect observed for elastic waves
in other materials too, such as sandstones and cracked solids
[32,33]: the strong wave action modifies the acoustic prop-
erties of the medium, which are slowly recovered after some
time, long compared to the wave period. The probing of this
slow process is sometimes a powerful indication of damage
(associated with the presence of internal contacts) in materi-
als [34].

The last parameter plotted in Fig. 7(c) is the characteristic
time 7, corresponding to the arrival time of half the total
energy of the signal. It exhibits a quite clear amplitude
dependence and has the same qualitative behavior as
the parameter R, ;. Until the 30th amplitude of the EAS
(853=0.3X107), the characteristic time T, of the probe
wave (even numbered signals) remains unchanged while the
signals s;;—s3; exhibit a diminishing characteristic time 7,. It
means that either the wave packet is propagating faster (non-
linear hardening of the medium) or the signal energy is pref-
erentially attenuated at later times of the coda. Due to the
strong nonlinear wave attenuation observed in the temporal
signals of Fig. 6(c), the second process is more adequate to
explain the 7, dependence on amplitude. This is visible in
Fig. 6(c) when comparing signals s,, and s;; or s,y and so.
No shift in time is detectable while the last part of the signals
is strongly attenuated relatively to their first part. Possible
interpretations of the above presented experimental observa-
tions are now given.

Qualitatively the influence of the nonlinear attenuation on
the shape of the coda-type acoustic signal could be under-
stood from the analysis of the nonlinear attenuation of the
individual wave packets contributing to coda. Let us assume
for simplicity that a particular wave packet is propagating
with the same and constant group velocity v,=v,(w). Dis-
tributed acoustic attenuation in the bulk of the medium leads
to the dependence of the signals not just on the accompany-
ing time 7=f-x/v, prescribing the shape of a wave packet
but also, additionally, slowly on time s=s(¢, 7). Here x de-
notes the coordinate along the packet propagation path,
which could be different for different packets. The group
velocity v,(w) can be also different for different packets. In
the following analysis we are not interested in the evolution
of the wave-packet shape with time (or, equivalently, with
propagation distance) but rather in the evolution of its am-
plitude. Neglecting the linear processes of wave-packet
broadening due to dispersion of group velocity, the equation
for the packet amplitude s,=s(t=x/v,) evolution can be
written as

ds/ It + w,(s)s = 0. (2)

Here w,(s) is the characteristic attenuation frequency (in-
verse of the attenuation time) at the central frequency of the
wave packet, which depends in general on the wave-packet
amplitude s. The general solution of this equation in the im-

plicit form is
s(0) ds’
f % =t, (3)
s(t) Wy (s")s

where s(0) is the amplitude of the wave packet emitted at
time r=0. Separating attenuation processes into amplitude-

011306-6



NONLINEAR EFFECTS FOR CODA-TYPE ELASTIC WAVES...

independent (linear) and amplitude-dependent (nonlinear)
processes w,,=w;y+ oy () oy (s) = 0], implicit solution (3)
can be presented as

s(t) ( ) ( fS(O) wy(s") opy ds')
- =eXpl— o exp| — .
S(O) LN (1) 1+ (,UNL(S )/(DLN N

(4)

The first exponential in Eq. (4) describes linear attenuation
of the signal while the second exponential describes the in-
fluence of an additional nonlinear attenuation. Similar to the
linear attenuation, bulk nonlinear attenuation exhibits accu-
mulating influence on the wave packet. The longer the propa-
gation time of a wave packet (or, equivalently, the larger its
arrival time at the detector) and the smaller the s(z), the
larger is the integral in Eq. (4) and the stronger is the fall in
signal amplitude relative to its magnitude in the absence of
nonlinear absorption. Thus nonlinear absorption leads to
preferential diminishing in amplitude of the tail of a coda-
type signal, that is, to an apparent shortening of a coda-type
signal in duration (localization of a coda-type signal in time).
This effect can be also explained in different terms as fol-
lows. In case of a nonlinear attenuation, an increase in a
signal amplitude leads to acceleration of the attenuation pro-
cesses, a wave packet loses its energy faster in time. As a
result of this at sufficiently long propagation times, the in-
crease in attenuation nearly completely compensates the in-
crease in initial signal amplitude. Thus increase in signal
amplitude leads to preferential increase in amplitude of the
leading part of the coda-type signal and corresponding short-
ening of the coda signal duration. The above presented
model could provide a qualitative insight for the possible
reasons of shortening in duration of coda signals s;; and 59
in comparison with s;, in Fig. 6(c).

For the model of linear dependence of attenuation on the
wave amplitude wy; =wy, s, which could be a good first (low
but finite amplitude) approximation for most of the models
of nonlinear absorption (in particular, for hysteretic absorp-
tion in stick-slip motion of Hertz-Mindlin contacts between
the beads [35,36]) the solution of Eq. (3) can be presented in
explicit form

s() _ exp(= 1)
5(0) 1+ [y s(0)/ oyl - exp(= wpyn)]’

confirming the predictions made above for a general case.
In particular in the domain of initial amplitudes and times
given by inequality [wy,s(0)/ w y][1—exp(-w yt)]>1, the
amplitude of the arrived wave packet is practically inde-
pendent on its initial amplitude (its growth saturates) s(z)
= (wpn/ 0y, )exp(wpt)—1]7". In this domain the normalized
amplitude of the wave-packet scales inverse proportionally
to initial amplitude [«1/5(0)]. In Fig. 6(c) this scaling law is
approximately valid only for the wave packets arriving
around 1.3 and 1.6 ms. In particular, the general tendency of
the normalized signal to fall is obvious from the comparison
of the signals 11 and 19 in Fig. 6(c). However, the changes
with increasing pump amplitude in the head of the coda-type
signal [around 0.7 ms<t<1.2 ms in Fig. 6(c)] and for the
packet around 1.4 ms do not follow our simplest qualitative

(5)
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model. This discrepancy indicates that the processes of bulk
nonlinear attenuation are not the only nonlinear processes
involved. In particular, the paths of the wave packets propa-
gation could be modified with increasing signal amplitude.

We have estimated that, in addition to hysteretic absorp-
tion through stick-slip motion of the contact between the
beads [35,36], the excitation by sound of the thermal waves
combined with the elastic nonlinearity of Hertzian contacts
could also lead to nonlinear absorption in our experiments.
The characteristic frequency f7 of relaxational absorption of
acoustic energy by a contact (due to irreversible processes of
heat conduction induced by inhomogeneous strain distribu-
tion in the vicinity of a contact [36]) can be estimated by
equating the thermal wavelength A(w)=12D;/ w, where Dy
is the thermal diffusivity of a material composing the beads,
to the contact radius a, which provides a scale for the char-
acteristic dimension of the importantly deformed volume
[37]. This results in fr=ws/(27)=D/(ma®). The radius of
Hertzian contacts depends on the bead diameter D and the
macroscopic strain & through the relation a«eD/2. Thus
the estimate for the frequency where the maximum acoustic
decrement related to thermoelastic energy dissipation
takes place is fr%(Dy/D*e”!. For the values of Dy
=10"7-10"° m?/s, e=(3-7)X 107, and D=2 mm in our
experiments, we estimate 40 Hz=f;=1 kHz. Thus for the
considered sufficiently large range of parameters, the relax-
ational peak is importantly lower in frequency than the
acoustic frequency of the wave packets launched in the me-
dium (f7<<f). In the presence of acoustic loading with am-
plitude smaller than the static loading, the dimensions of the
contact diminish due to acoustic field rectification caused by
the nonlinearity of the Hertzian contact [37]. This forces the
relaxation frequency to increase. The relaxational peak
moves closer to the excitation frequency, resulting in an ad-
ditional induced (nonlinear) absorption of sound [37].

A temperature rise due to the dissipation of the acoustic
power into heat could have an effect on the acoustic attenu-
ation in the medium. It is also a good candidate to explain
the slow recovery of the elastic properties of the medium (or
the recovery of the coda shape) at the end of the EAS by
average cooling of the contacts in the medium with time.
Theoretical estimates of acoustically induced temperature
rise in our experimental configuration as well as temperature
measurements inside the medium have been performed. The
heat capacity of the granular medium, neglecting the contri-
bution of the saturating air, can be estimated as pC,,, where
Cp20.75><10‘3 JK'm™ is the heat capacity per unit
mass of glass and p=1.4 X 10> kg m~3 is the density of the
granular medium. Considering that most of the acoustic en-
ergy is absorbed in a region of volume V,,,=3X10* m3
surrounding the emitter, the heat capacity of the region
where the acoustic waves are absorbed is Cp,=pC,V s
=3x10"* JK!. With the maximum generated acoustic
power P,.=~2 mW during the time r=30 s (corresponding
to one measurement at the maximum amplitude used for the
results reported in this paper), and considering that all the
acoustic energy is dissipated into heat, the temperature rise is
estimated as
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Pt
AT=—""=2x10"* K. (6)

abs

This very small estimated temperature rise of the medium is
not in contradiction with the performed experiments. The
achieved precision in the temperature measurements using
thermocouples embedded in the granular medium was better
than 0.1 K. At full acoustic power of P,.=2 mW, no tem-
perature change has been observed, with an acoustic excita-
tion lasting for more than 5 min. This maximizes the very
small estimated average temperature rise. The average strain
corresponding to estimated temperature rise (6) in the
medium, i.e., the relative modification of the bead
dimensions (the radius R) due to this homogeneous heating is
estimated via the thermal-expansion coefficient of glass
a=7.5%x10"" K as

AR
i al=15X% 1071, (7)

Consequently, the very small temperature rise (smaller than
the room-temperature fluctuations) and the small associated
strain (much smaller than the acoustic strain), derived here
considering a homogeneous heating over the absorption re-
gion, are too weak to explain the observed acoustic signal
modifications. However, a precise study of the heating at the
level of the contact could provide important information on
the possible inhomogeneous heating of the beads and tem-
perature rise at the level of each individual contact. Friction
and thermoelasticity, two possible mechanisms of acoustic
energy conversion into heat, both take place at the level of
the contact where most of the strain is localized. As a con-
sequence, the heat is first generated in a volume, around the
contact regions, smaller than the one considered above for
homogeneous heating of the medium by a factor going from
10* to 10°. In this case, the temperature rise could be locally
much higher than the one estimated above and could contrib-
ute to the observed modification of the acoustic coda with
amplitude.

Elastic memory effects at the level of the contacts them-
selves (stick-slip motion for Hertz-Mindlin contacts for in-
stance [35]) or at the mesoscopic scale [38] could also con-
tribute. In order to explain the slow-dynamic -effects
observed above the excitation strain esg, it is possible to
consider that the medium state is pushed by the acoustic
wave action in an out of equilibrium configuration. The dis-
tribution of the hysteretic mechanical elements (the hyster-
etic contacts) in the so-called Preisach-Mayergoyz plane
[39-41] is modified by the wave action. The slow healing
process, which could correspond to a recovering of the initial
distribution of hysteretic elements of the Preisach-
Mayergoyz plane, could occur through the action of thermal
phonons. This process has been described in [39] in the
frame of the Preisach-Arrhenius model of hysteresis.

It should be also mentioned that acoustic spectrum broad-
ening due to generation of combination frequencies (genera-
tion of sum frequencies [17], difference frequencies [7], or
subharmonics [16,18]) is accompanied by energy losses at

PHYSICAL REVIEW E 80, 011306 (2009)

the fundamental frequency, i.e., by the nonlinear attenuation.
This is one more of the possible physical mechanisms of
nonlinear absorption in our experiments.

Finally, an interesting question is the dependence of the
wave-packet scattering on the packet amplitude. If we accept
the simplest hypothesis that scattering is due to fluctuations
of the size of the contacts along the packet propagation path,
and the weaker the contact relative to average loaded con-
tacts the stronger it scatters, then softening of the Hertzian
contacts in the periodic acoustic strain field of an amplitude
lower than the average strain should cause the increase in
scattering, i.e., the nonlinear attenuation.

Although all the above proposed scenarios seem to be in
favor of the nonlinear attenuation of sound waves and can
help to understand our experimental observations, at least
partially, the physical reality is obviously richer. The inter-
esting physics in wave-packet propagation could come from
the fact that the continuous distribution of contact preloading
implies the existence of weakly loaded contacts (with pre-
loading lower than the strain in the acoustic field) that could
be forced clapping (to open and to close) by the wave packet.
There are also noncontacting grains that could be forced to
contact by the acoustic wave packet, introducing tapping
(closing and opening) contacts in the medium. It could be
demonstrated that under some conditions these intermittent
contacts can become larger in surface area and stiffer (in
average over the wave period) with increasing wave ampli-
tude. For example, the rigidity of a clapping contact starts to
grow when the acoustic strain exceeds the strain necessary
for the opening of this contact (i.e., the preloading strain)
about 1.5 times (see Fig. 6 in [37]). Consequently contacts of
this type could, above some critical amplitude of the acoustic
field, induce through the mechanisms of thermoelastic relax-
ational wave absorption and wave scattering, not the nonlin-
ear acoustic attenuation but the nonlinear acoustic transpar-
ency. Thus the nonlinear phenomena in the unconsolidated
granular packing under consideration here could be expected
to be strongly dependent on the distribution of contact pre-
loading.

B. Dependence of signal energy on excitation amplitude

In order to analyze these amplitude-dependent effects on
the signal energy attenuation, it is adequate now to focus on
the energetical properties of the signals. In Fig. 8(d), the
EAS is recalled. The total energies of the high-pass filtered
signals CnHE(O) are normalized by a quantity proportional to
the excitation energy 8121 both for the low excitation ampli-
tudes of the EAS [Fig. 8(a)] and for the higher excitation
amplitudes [Fig. 8(b)]. The parts comprised between the
dashed lines compare the same range of normalized energy,
from normalized values of 0.8—1.1 roughly, which are the
extreme values taken by the signals excited with the weak
probe amplitude. The lowest value observed in Fig. 8(a) cor-
responds to an excitation amplitude range where the param-
eter R, ; begins to decrease from one to a lower value. It is
important to note that, for the normalized energies associated
with the higher excitation amplitudes, in Fig. 8(b), all the
values are below the region delimited by the dashed lines,
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FIG. 8. (a) Energy of the high-pass filtered signals CEE(O) nor-
malized by a quantity proportional to the excitation energy &, for
the low excitation amplitudes of the EAS (d). (b) Energy of the
high-pass filtered signals for the higher excitation amplitudes of the
EAS (d). (c) Energy of the low-pass filtered signals for the higher
excitation amplitudes of the EAS (d). (d) Excitation amplitude se-

quence (EAS) used in the experiment.

which means that energy absorption is always stronger for
g,>¢€; even when the acoustic response of the medium has
been modified by a strong wave action (even signals s49—sSs
for instance). The general behavior of the normalized energy
for increasing excitation amplitudes is decreasing and mo-
notonous: the higher the excitation amplitude is, the higher
the energy absorption is. Its associated energy is conse-
quently deviating from the 8121 law. The nonlinear energy of
the LF demodulated part is increasing monotonously with
the excitation amplitude. The LF energy exceeds the HF en-
ergy of the signal from the excitation amplitude &4, as seen
in Fig. 8(c) when the LF energy is above the region delimited
by the dashed lines.

IV. SUMMARY OF THE RESULTS

Different experimental observations have been presented
and the main results can be summarized as the following:

PHYSICAL REVIEW E 80, 011306 (2009)

(i) observation of the coexistence of a nonlinear self-
demodulated LF wave together with a HF coda-type wave
(Fig. 2),

(ii) a drastic increase in the HF coda energy with static
stress, compared to the dependence of the LF wave energy
(Fig. 4),

(iii) a strong shape dependence of the coda on the acoustic
excitation amplitude (Figs. 5 and 6), and especially a strong
nonlinear attenuation of the coda wave at the latest arrival
times,

(iv) almost no variation in the acoustic properties of the
medium after moderate acoustic excitations up to an excita-
tion acoustic strain of &,~0.3X 1075, corresponding to sig-
nal number 31 (this represents a ratio of dynamic over static
deformation of g,/g,=5Xx107%),

(v) dynamic modifications of the acoustic properties (non-
linear self-action, fast dynamics) even at low excitation lev-
els e,~2X 1077 corresponding to signal number 11 (this
represents a ratio of dynamic over static deformation of
g,/ 80=3X107%),

(vi) modification of the acoustic properties after large ex-
citation levels (slow dynamics and conditioning effects), fol-
lowed by a slow recovery.

Having in mind the ray acoustic approximation in this
experiment of multiple scattering of elastic waves, the first
part of the coda signals can be associated with short propa-
gation paths while the last part of the coda signals may be
associated with longer propagation paths. Note that the
lengths of the long propagation paths can exceed the con-
tainer size by a factor of 10, which means that reflexions on
the container sides may occur. In principle, nonlinear wave
attenuation should be more visible on the long propagation
paths than on the short ones because the distance for the
accumulation of this nonlinear process is larger [25,42]. This
explains the stronger effect of nonlinear wave attenuation on
the last part of coda signals, which experienced longer propa-
gation paths. The physical nature of this nonlinear wave at-
tenuation process remains undetermined. Nonlinear scatter-
ing of the elastic waves due to opening or closing of the
weakest contacts and therefore dynamic switching of propa-
gation paths under the wave action could explain the nonlin-
ear attenuation. This is in agreement with the drastic depen-
dence of the HF coda wave energy transmission on the
applied static stress. Nonlinear absorption of the elastic
waves at the contacts by stick-slip [35] or thermoelasticity
[33] processes could also contribute. Recent numerical simu-
lations of the acoustic propagation through unconsolidated
granular packings [43,44] could provide an interesting in-
sight in the processes involved in the experimentally ob-
served nonlinear attenuation.

For both nonlinear wave scattering and nonlinear wave
absorption, the weakest contacts are supposed to be respon-
sible for the main contribution, especially for such small
acoustic excitation strains as e,=10"". Coda signals are
shown to be particularly sensitive to these weak contacts,
certainly due to the fact that energy is well distributed over
the entire medium, including weak contacts, after few milli-
seconds (coda signals have durations larger than 2 ms, which
corresponds to propagation paths much larger than the
emitter—receiver distance). Moreover, the wavelength, being
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of the order of the bead diameter (A ~d), small features as
small as the beads and their contacts are resolved by the
acoustic wave. This is not the case for small amplitude long-
wavelength propagation (\>d), which is known to be less
sensitive to the weak contacts in the medium and more in-
fluenced by the average properties of the medium [7,9].

The modification of the acoustic properties after
the application of a strong excitation is commonly related to
the effect of conditioning and slow dynamics [32,33,45,46].
This addresses the problem of the acoustic wave influence on
the granular medium state and memory. Under a given
threshold, the medium is apparently not modified (under
excitation amplitude number 31, £,=0.3 X 107, which cor-
responds to a ratio of dynamic over static deformation of
e,/ 89="5X1073), while over some excitation amplitude, the
medium exhibits memory of the past acoustic excitation.
Coda signal analysis is shown to be a powerful tool in moni-
toring slight modifications in the acoustic response of an
unconsolidated granular structure as a function of time, the
resolution (including some time averaging) being of the or-
der of the second.

V. CONCLUSIONS

In this work, experimental results on the nonlinear trans-
port of short-wavelength (of the order of the bead diameter)
acoustic waves are reported. It is shown that the amplitude
dependence of the codas is strong, and contains some infor-
mation on the strength of the propagation paths in the me-
dium. An amplitude-dependent attenuation is visible on the
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characteristic time T, (arrival time of half the signal energy),
which diminishes with the excitation amplitude: most of the
nonlinear self-action effects take place at the latest arrival
times of the coda signals. This shows that the field that en-
countered a larger number of scattering events, or that does
not follow the strongest force chains is more influenced by
the effects of nonlinear dissipation (stick-slip, sliding, or
thermoelastic losses) and nonlinear scattering (closing or
opening of the weak contacts for instance).

Among the possible applications of such experimental re-
sults is the nondestructive testing (NDT) of granular struc-
tures with nonlinear acoustic methods, in particular with
multiple scattered waves (coda signals), in contrast to the
widely used and recent nonlinear methods employing coher-
ent wave interactions [47,48]. For this purpose, it would be
of interest to make use in the future of the coda wave inter-
ferometry technique [49-51].

It has been shown that the acoustic properties of the me-
dium can be modified temporarily by a strong acoustic exci-
tation. In the context of NDT, this work shows the range of
acoustic amplitudes to use (or the time necessary to recover
the initial state) in order to stay in a regime where the acous-
tic waves do not modify the elastic response of the medium.
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